Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Dioxo-2,3-dihydro-1*H*-isoindol-2-yl 2,3,4-tri-O-acetyl-β-D-xyloside

Runan Tian,^{a,b} Haoriqinbatu,^a Hongchang Liu,^a Xiaoming Wang^a* and Yonghua Yang^a*

^aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China, and ^bCollege of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, People's Republic of China

Correspondence e-mail: wangxm07@nju.edu.cn, yangyh@nju.edu.cn

Received 27 October 2011; accepted 2 February 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; R factor = 0.047; wR factor = 0.131; data-to-parameter ratio = 7.4.

The title compound, $C_{19}H_{19}NO_{10}$, was obtained from the reaction of α -D-1-bromo-2,3,4-tri-O-acetylxylose with *N*-hydroxyphthalimide in the presence of potassium carbonate. The asymmetric unit contains two independent molecules, in which the O-CH-O-N torsion angles are 73.0 (4) and 65.0 (4)°. The hexapyranosyl rings adopt chair conformations and the substituent groups are in equatorial positions. In the crystal, molecules are linked by nonclassical C-H···O hydrogen bonds.

Related literature

For related structures, see: Yang *et al.* (2004); Wang *et al.* (2008); Bai *et al.* (2008).

b = 9.2270 (18) Å

V = 2053.8 (7) Å³

c = 19.615 (4) Å

 $\beta = 104.52 \ (3)^{\circ}$

Experimental

Crystal data

C19H19NO10
$M_r = 421.35$
Monoclinic, P2 ₁
a = 11.722 (2) Å

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$

Data collection

```
Enraf–Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.957, T_{\max} = 0.978
4180 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.131$ S = 1.003977 reflections 541 parameters T = 295 K $0.40 \times 0.30 \times 0.20 \text{ mm}$

3977 independent reflections 2784 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ 3 standard reflections every 200 reflections intensity decay: 1%

6 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \text{C11}-\text{H11}A\cdots\text{O15}^{\text{i}} \\ \text{C22}-\text{H22}A\cdots\text{O1}^{\text{ii}} \\ \text{C26}-\text{H26}A\cdots\text{O3}^{\text{iii}} \\ \text{C30}-\text{H30}B\cdots\text{O5} \\ \text{C35}-\text{H35}\cdots\text{O5}^{\text{iv}} \end{array}$	0.98 0.96 0.98 0.97 0.93	2.42 2.39 2.54 2.56 2.54	3.339 (6) 3.329 (7) 3.385 (6) 3.429 (6) 3.294 (8)	157 165 144 149 138
			====== (=)	

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) x, y + 1, z; (iv) $-x + 1, y - \frac{1}{2}, -z$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We are grateful to the National Natural Science Foundation of China (grant No. 30711041) and the Fundamental Research Funds for the Central Universities (grant No. 1106020824)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2311).

References

Bai, L., Wang, X. & Cai, B. (2008). Acta Cryst. E64, 01623.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X., Li, X., Yin, Y., Pang, Y. & Yang, Y. (2008). Acta Cryst. E64, 0669.
 Yang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M., Jiao, K., Kassim, M. & Yamin, B. M. (2004). Acta Cryst. E60, 01902–01904.

organic compounds

supplementary materials

Acta Cryst. (2012). E68, o635 [doi:10.1107/S1600536812004369]

1,3-Dioxo-2,3-dihydro-1*H*-isoindol-2-yl 2,3,4-tri-O-acetyl-β-D-xyloside

Runan Tian, Haoriqinbatu, Hongchang Liu, Xiaoming Wang and Yonghua Yang

Comment

In the present work, the structure of 2,3,4-tri-*O*-acetyl- β -D-xyloside-*N*-hydroxyphthalimide, **I**, has been determined (Fig. 1). The asymmetric unit of **I** contains two independent molecules. The molecules are twisted at the CH–O bonds with the O7–C8–O8–N1 and O17–C29–O18–N2 torsion angles of 73.0 (4)° (molecule 1) and 65.0 (4)° (molecule 2), respectively. The bond lengths and angles in the title molecules show normal values. The hexapyranosyl ring adopts chair conformation (Fig. 1) and the substituented groups are individually planar and occupy equatorial positions (Yang *et al.*, 2004; Wang *et al.*, 2008; Bai *et al.*, 2008).

Experimental

The solution of *a*-D-1-bromo-2,3,4-tri-*O*-acetyl-xylose (0.1 mol) and *N*-hydroxyphthalimide (0.1 mol) in chloroform (100 ml) and water (100 ml) was treated with sodium carbonate (0.1 mol) with triethyl benzyl ammonium chloride in present at room temperature overnight. The chloroform layer was separated, washed with water and allowed to evaporate slowly. The residual 2,3,4-tri-*O*-acetyl- β -D-xyloside-*N*- hydroxyphthalimide was then recrystallized to constant melting point (m.p. 455.6-456 K) from ethyl acetate. The purity of the compound was checked and characterized by NMR spectra. Fine block colourless crystals for X-ray diffraction were obtained by slow evaporation of an ethyl acetate at room temperature. ¹H NMR, 500 MHz, CDCl₃, δ : 8.15 (d, J = 9.6 Hz, 1*H*, *Ar*–H), 7.85 (d, J = 9.3 Hz, 1*H*, *Ar*–H), 5.82(d, J = 8.2 Hz, 1*H*, *G*–H), 5.25 (t, J = 9.9 Hz, 1*H*, *G*–H), 4.87(t, J = 9.6 Hz, 1*H*, *G*–H), 4.62 (t, J = 9.0 Hz, 1H, *G*–H), 3.80 (m, 2*H*, *G*–H), 2.14, 2.12, 2.09 (3s, COCH₃).

Refinement

Hydrogen atoms were placed in calculated positions with appropriate riding models: C-H = 0.96Å for methyl H; C-H = 0.93Å for aryl H; C-H = 0.98Å for methine H and $U_{iso}(H) = 1.2(1.5)U_{eq}(C)$. The atom C25 restrictive refinement by AFIX2 command.

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

1,3-Dioxo-2,3-dihydro-1*H*-isoindol-2-yl 2,3,4-tri-O-acetyl-β-D-xyloside

Crystal data	
$C_{19}H_{19}NO_{10}$	F(000) = 880
$M_r = 421.35$	$D_{\rm x} = 1.363 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Melting point = $455.6-456$ K
Hall symbol: P 2yb	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 11.722 (2) Å	Cell parameters from 25 reflections
b = 9.2270 (18) Å	$\theta = 9-12^{\circ}$
c = 19.615 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 104.52$ (3)°	T = 295 K
V = 2053.8 (7) Å ³	Block, colourless
Z=4	$0.40 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4	3977 independent reflections
diffractometer	2784 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
Graphite monochromator	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
$\omega/2\theta$ scans	$h = -14 \rightarrow 13$
Absorption correction: ψ scan	$k = 0 \rightarrow 11$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 23$
$T_{\min} = 0.957, \ T_{\max} = 0.978$	3 standard reflections every 200 reflections
4180 measured reflections	intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
S = 1.00	H-atom parameters constrained
3977 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0835P)^2]$
541 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7869 (7)	-0.0615 (11)	0.5590 (4)	0.122 (3)
H1A	0.7057	-0.0752	0.5347	0.183*
H1B	0.7919	-0.0293	0.6062	0.183*
H1C	0.8286	-0.1514	0.5604	0.183*
01	0.8981 (5)	0.1670 (8)	0.5445 (3)	0.134 (2)
O2	0.8245 (3)	0.0151 (4)	0.45501 (15)	0.0650 (9)
O3	0.5499 (3)	0.0723 (5)	0.3498 (2)	0.0833 (11)
O4	0.6896 (3)	0.2426 (3)	0.36472 (17)	0.0570 (8)
05	0.7255 (4)	0.4574 (4)	0.2203 (2)	0.0873 (12)
O6	0.7291 (3)	0.2142 (3)	0.22473 (15)	0.0532 (7)
07	1.0122 (3)	0.1240 (4)	0.34194 (17)	0.0668 (9)
08	0.9724 (3)	0.2386 (3)	0.23545 (16)	0.0564 (8)
O9	1.2187 (3)	0.2686 (4)	0.28619 (19)	0.0749 (10)
O10	0.9277 (3)	0.0843 (5)	0.10753 (18)	0.0738 (10)
N1	1.0553 (3)	0.1711 (4)	0.20799 (18)	0.0505 (9)
C2	0.8407 (6)	0.0501 (10)	0.5213 (3)	0.098 (2)
C3	0.5069 (4)	0.3108 (7)	0.3831 (3)	0.0703 (15)
H3A	0.4296	0.2725	0.3798	0.105*
H3B	0.5018	0.3899	0.3507	0.105*
H3C	0.5402	0.3447	0.4302	0.105*
C4	0.5824 (4)	0.1965 (6)	0.3658 (3)	0.0603 (12)
C5	0.6116 (6)	0.3217 (9)	0.1216 (3)	0.097 (2)
H5A	0.5418	0.2725	0.1262	0.146*
H5B	0.6499	0.2650	0.0928	0.146*
H5C	0.5906	0.4146	0.0999	0.146*
C6	0.6941 (4)	0.3424 (6)	0.1934 (3)	0.0607 (12)

C7	0.8168 (4)	0.2182 (5)	0.2902 (2)	0.0500 (10)
H7A	0.8351	0.3192	0.3041	0.060*
C8	0.9257 (4)	0.1452 (5)	0.2785 (2)	0.0501 (10)
H8A	0.9045	0.0520	0.2546	0.060*
С9	0.9693 (4)	0.0343 (7)	0.3882 (3)	0.0712 (15)
H9A	1.0326	0.0122	0.4292	0.085*
H9B	0.9409	-0.0561	0.3648	0.085*
C10	0.8700 (4)	0.1095 (6)	0.4110 (2)	0.0560 (12)
H10A	0.8986	0.1993	0.4363	0.067*
C11	0.7720 (4)	0.1427 (5)	0.3462 (2)	0.0491 (10)
H11A	0.7314	0.0530	0.3273	0.059*
C12	1.0261 (4)	0.1045 (6)	0.1424 (2)	0.0562 (12)
C13	1.1421 (4)	0.0666 (5)	0.1293 (2)	0.0569 (12)
C14	1.1708 (5)	-0.0142 (6)	0.0768 (3)	0.0657 (14)
H14	1.1125	-0.0563	0.0412	0.079*
C15	1.2878 (6)	-0.0308 (7)	0.0784 (4)	0.0845 (17)
H15	1.3087	-0.0842	0.0432	0.101*
C16	1.3747 (5)	0.0298 (7)	0.1309 (3)	0.0835 (17)
H16	1.4533	0.0196	0.1302	0.100*
C17	1.3452 (5)	0.1074 (6)	0.1859 (3)	0.0793 (16)
H17	1.4032	0.1463	0.2226	0.095*
C18	1.2312 (4)	0.1231 (5)	0.1834 (2)	0.0529 (11)
C19	1.1734 (4)	0.1982 (6)	0.2336 (2)	0.0564 (11)
011	0.4128 (4)	0.7342 (6)	0.4406 (2)	0.0991 (14)
O12	0.3423 (3)	0.8357 (4)	0.33808 (15)	0.0564 (8)
O13	0.0676 (3)	0.8442 (5)	0.2317 (3)	0.0949 (14)
O14	0.1691 (3)	0.6402 (4)	0.26372 (16)	0.0538 (8)
O15	0.7126 (3)	0.7988 (4)	0.29705 (18)	0.0669 (9)
O16	0.5774 (2)	0.6731 (4)	0.33357 (16)	0.0566 (8)
O17	0.4092 (3)	0.5377 (3)	0.19975 (17)	0.0581 (8)
O18	0.2382 (3)	0.6188 (3)	0.12131 (16)	0.0591 (8)
O19	0.0646 (3)	0.4089 (4)	0.07830 (19)	0.0710 (10)
O20	0.3982 (3)	0.5904 (5)	0.03530 (19)	0.0799 (11)
N2	0.2382 (4)	0.5133 (5)	0.0720 (2)	0.0599 (10)
C20	0.3261 (6)	0.9705 (9)	0.4350 (3)	0.104 (2)
H20A	0.3465	0.9642	0.4854	0.156*
H20B	0.2427	0.9845	0.4180	0.156*
H20C	0.3669	1.0507	0.4207	0.156*
C21	0.3611 (5)	0.8328 (8)	0.4048 (3)	0.0790 (16)
C22	-0.0176 (4)	0.6513 (7)	0.2828 (3)	0.0678 (14)
H22A	0.0112	0.6384	0.3327	0.102*
H22B	-0.0351	0.5585	0.2606	0.102*
H22C	-0.0877	0.7094	0.2732	0.102*
C23	0.0733 (4)	0.7248 (6)	0.2550 (2)	0.0569 (12)
C24	0.7675 (5)	0.6422 (8)	0.3972 (3)	0.0842 (17)
H24A	0.7657	0.5396	0.3891	0.126*
H24B	0.7434	0.6620	0.4396	0.126*
H24C	0.8462	0.6777	0.4021	0.126*
C25	0.6864 (4)	0.7153 (6)	0.3371 (2)	0.059

C26	0.4855 (4)	0.7379 (5)	0.2796 (2)	0.0525 (11)
H26A	0.4995	0.8422	0.2770	0.063*
C27	0.3697 (3)	0.7111 (5)	0.3015 (2)	0.0496 (10)
H27A	0.3784	0.6260	0.3323	0.060*
C28	0.2668 (4)	0.6885 (5)	0.2378 (2)	0.0473 (10)
H28A	0.2473	0.7789	0.2112	0.057*
C29	0.2899 (4)	0.5686 (5)	0.1910 (2)	0.0517 (11)
H29A	0.2490	0.4806	0.1998	0.062*
C30	0.4795 (4)	0.6667 (6)	0.2084 (2)	0.0614 (13)
H30A	0.4458	0.7344	0.1709	0.074*
H30B	0.5585	0.6428	0.2051	0.074*
C31	0.1439 (4)	0.4156 (5)	0.0513 (2)	0.0523 (11)
C32	0.1726 (4)	0.3348 (5)	-0.0062 (2)	0.0517 (11)
C33	0.1103 (5)	0.2213 (6)	-0.0463 (2)	0.0698 (14)
H33	0.0399	0.1875	-0.0387	0.084*
C34	0.1565 (6)	0.1625 (7)	-0.0968 (3)	0.0941 (19)
H34	0.1193	0.0848	-0.1235	0.113*
C35	0.2655 (7)	0.2222 (10)	-0.1092 (4)	0.125 (3)
H35	0.2941	0.1859	-0.1459	0.149*
C36	0.3239 (6)	0.3267 (8)	-0.0691 (4)	0.097 (2)
H36	0.3956	0.3599	-0.0752	0.117*
C37	0.2751 (4)	0.3856 (6)	-0.0175 (2)	0.0610 (13)
C38	0.3176 (4)	0.5078 (6)	0.0295 (2)	0.0577 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.140 (6)	0.152 (8)	0.090 (5)	-0.014 (6)	0.062 (4)	0.032 (5)
01	0.155 (5)	0.141 (5)	0.104 (3)	-0.035 (4)	0.029 (3)	-0.008 (4)
O2	0.082 (2)	0.069 (2)	0.0509 (19)	-0.0061 (19)	0.0297 (16)	0.0099 (17)
03	0.073 (2)	0.068 (3)	0.115 (3)	-0.013 (2)	0.034 (2)	-0.020 (2)
O4	0.0583 (18)	0.0449 (18)	0.0749 (19)	-0.0017 (15)	0.0299 (15)	-0.0017 (16)
05	0.095 (3)	0.043 (2)	0.111 (3)	0.002 (2)	0.001 (2)	0.015 (2)
O6	0.0639 (18)	0.0388 (17)	0.0554 (17)	-0.0029 (15)	0.0120 (14)	0.0043 (15)
O7	0.0572 (18)	0.070 (2)	0.076 (2)	0.0014 (18)	0.0216 (16)	0.017 (2)
08	0.0640 (18)	0.0413 (17)	0.0710 (19)	0.0000 (15)	0.0302 (16)	0.0071 (16)
09	0.073 (2)	0.073 (3)	0.078 (2)	-0.014 (2)	0.0159 (18)	-0.028 (2)
O10	0.062 (2)	0.083 (3)	0.070 (2)	-0.003 (2)	0.0042 (18)	-0.005 (2)
N1	0.052 (2)	0.052 (2)	0.053 (2)	-0.0043 (18)	0.0235 (16)	0.0007 (18)
C2	0.095 (4)	0.144 (7)	0.057 (3)	-0.037 (5)	0.022 (3)	-0.008 (4)
C3	0.063 (3)	0.076 (4)	0.073 (3)	-0.002 (3)	0.018 (3)	-0.007 (3)
C4	0.056 (3)	0.055 (3)	0.071 (3)	-0.006 (2)	0.019 (2)	-0.007 (3)
C5	0.093 (4)	0.105 (5)	0.084 (4)	0.001 (4)	0.002 (3)	0.024 (4)
C6	0.063 (3)	0.056 (3)	0.062 (3)	0.008 (3)	0.013 (2)	0.006 (3)
C7	0.065 (3)	0.031 (2)	0.055 (2)	-0.006 (2)	0.016 (2)	0.003 (2)
C8	0.053 (2)	0.042 (2)	0.057 (2)	0.000 (2)	0.016 (2)	0.006 (2)
C9	0.066 (3)	0.082 (4)	0.070 (3)	0.020 (3)	0.026 (3)	0.030 (3)
C10	0.061 (3)	0.059 (3)	0.049 (2)	-0.006 (2)	0.016 (2)	0.000 (2)
C11	0.052 (2)	0.041 (2)	0.055 (2)	0.000 (2)	0.015 (2)	-0.004 (2)
C12	0.065 (3)	0.059 (3)	0.048 (2)	-0.012 (2)	0.020 (2)	0.006 (2)

C13	0.070 (3)	0.042 (3)	0.062 (3)	0.000 (2)	0.024 (2)	0.007 (2)
C14	0.094 (4)	0.047 (3)	0.057 (3)	0.001 (3)	0.021 (3)	-0.002 (2)
C15	0.114 (5)	0.055 (3)	0.098 (4)	0.016 (3)	0.053 (4)	-0.006 (3)
C16	0.077 (3)	0.078 (4)	0.105 (4)	0.008 (3)	0.039 (3)	-0.002 (4)
C17	0.076 (4)	0.062 (4)	0.104 (4)	-0.007 (3)	0.029 (3)	-0.001 (3)
C18	0.062 (3)	0.049 (3)	0.049 (2)	-0.002(2)	0.018 (2)	0.011 (2)
C19	0.063 (3)	0.047 (3)	0.060 (3)	0.002 (2)	0.018 (2)	0.003 (2)
O11	0.124 (3)	0.108 (4)	0.066 (2)	0.033 (3)	0.025 (2)	0.002 (3)
O12	0.0646 (18)	0.0526 (19)	0.0551 (19)	0.0081 (16)	0.0207 (15)	-0.0096 (16)
O13	0.072 (2)	0.061 (3)	0.159 (4)	0.024 (2)	0.042 (3)	0.039 (3)
O14	0.0517 (17)	0.0447 (17)	0.0716 (19)	0.0041 (15)	0.0278 (15)	0.0066 (16)
O15	0.066 (2)	0.052 (2)	0.089 (2)	-0.0079 (17)	0.0298 (18)	0.0012 (19)
O16	0.0430 (16)	0.056 (2)	0.074 (2)	-0.0074 (15)	0.0196 (15)	0.0050 (17)
O17	0.0638 (19)	0.0404 (18)	0.076 (2)	0.0079 (15)	0.0285 (16)	-0.0060 (16)
O18	0.078 (2)	0.0381 (17)	0.0626 (19)	-0.0034 (16)	0.0193 (16)	-0.0046 (16)
O19	0.065 (2)	0.067 (2)	0.088 (2)	-0.0089 (18)	0.0313 (19)	-0.001 (2)
O20	0.084 (2)	0.080 (3)	0.087 (2)	-0.024 (2)	0.043 (2)	-0.014 (2)
N2	0.071 (3)	0.052 (2)	0.059 (2)	-0.008(2)	0.022 (2)	-0.015 (2)
C20	0.110 (5)	0.128 (6)	0.077 (4)	0.025 (5)	0.028 (4)	-0.047 (4)
C21	0.088 (4)	0.086 (4)	0.064 (4)	0.010 (4)	0.023 (3)	-0.007 (4)
C22	0.048 (2)	0.092 (4)	0.071 (3)	0.002 (3)	0.029 (2)	0.008 (3)
C23	0.054 (3)	0.061 (3)	0.056 (3)	0.003 (3)	0.014 (2)	0.002 (3)
C24	0.072 (3)	0.099 (5)	0.080 (3)	-0.015 (4)	0.017 (3)	-0.012 (4)
C25	0.059	0.059	0.059	0.000	0.015	0.000
C26	0.057 (2)	0.039 (2)	0.071 (3)	0.004 (2)	0.032 (2)	0.002 (2)
C27	0.053 (2)	0.040 (2)	0.064 (3)	-0.001 (2)	0.028 (2)	-0.002 (2)
C28	0.058 (2)	0.035 (2)	0.054 (2)	-0.003 (2)	0.024 (2)	0.0039 (19)
C29	0.061 (3)	0.033 (2)	0.065 (3)	-0.007 (2)	0.024 (2)	-0.005 (2)
C30	0.062 (3)	0.064 (3)	0.071 (3)	0.007 (3)	0.040 (2)	0.003 (3)
C31	0.052 (2)	0.049 (3)	0.058 (3)	-0.003 (2)	0.018 (2)	0.001 (2)
C32	0.064 (3)	0.049 (3)	0.045 (2)	0.005 (2)	0.018 (2)	0.002 (2)
C33	0.098 (4)	0.048 (3)	0.059 (3)	-0.003 (3)	0.010 (3)	-0.002 (3)
C34	0.140 (5)	0.063 (4)	0.074 (4)	0.005 (4)	0.015 (4)	-0.023 (3)
C35	0.166 (7)	0.119 (7)	0.107 (5)	0.018 (6)	0.068 (5)	-0.046 (5)
C36	0.121 (5)	0.083 (5)	0.110 (5)	-0.007 (4)	0.072 (4)	-0.017 (4)
C37	0.064 (3)	0.066 (3)	0.057 (3)	0.007 (3)	0.022 (2)	0.005 (3)
C38	0.057 (3)	0.061 (3)	0.059 (3)	0.001 (3)	0.022 (2)	0.000 (3)

Geometric parameters (Å, °)

C1—C2	1.497 (10)	O11—C21	1.214 (7)	
C1—H1A	0.9600	O12—C21	1.272 (6)	
C1—H1B	0.9600	O12—C27	1.433 (5)	
C1—H1C	0.9600	O13—C23	1.188 (6)	
O1—C2	1.292 (10)	O14—C23	1.343 (6)	
O2—C2	1.307 (7)	O14—C28	1.435 (5)	
O2—C10	1.421 (5)	O15—C25	1.194 (6)	
O3—C4	1.224 (6)	O16—C25	1.321 (6)	
O4—C4	1.332 (6)	O16—C26	1.437 (5)	
O4—C11	1.446 (5)	O17—C29	1.395 (5)	

O5—C6	1.201 (6)	O17—C30	1.433 (6)
O6—C6	1.349 (6)	O18—N2	1.373 (5)
O6—C7	1.430 (5)	O18—C29	1.426 (5)
O7—C8	1.408 (5)	O19—C31	1.180 (5)
O7—C9	1.410 (6)	O20—C38	1.198 (6)
O8—N1	1.373 (4)	N2—C38	1.397 (6)
O8—C8	1.410 (5)	N2—C31	1.405 (6)
O9—C19	1.222 (6)	C20—C21	1.501 (9)
O10—C12	1.199 (5)	C20—H20A	0.9600
N1—C19	1.372 (6)	C20—H20B	0.9600
N1—C12	1.388 (6)	C20—H20C	0.9600
C3—C4	1.471 (7)	C22—C23	1.477 (7)
С3—НЗА	0.9600	C22—H22A	0.9600
С3—Н3В	0.9600	C22—H22B	0.9600
С3—НЗС	0.9600	C22—H22C	0.9600
C5—C6	1.508 (8)	C24—C25	1.479 (8)
С5—Н5А	0.9600	C24—H24A	0.9600
С5—Н5В	0.9600	C24—H24B	0.9600
С5—Н5С	0.9600	C24—H24C	0.9600
C7—C11	1.502 (6)	C26—C30	1.530(7)
С7—С8	1.511 (6)	C26—C27	1.542 (5)
С7—Н7А	0.9800	C26—H26A	0.9800
C8—H8A	0.9800	C27—C28	1.517 (6)
C9—C10	1.516 (6)	С27—Н27А	0.9800
С9—Н9А	0.9700	C28—C29	1.506 (6)
С9—Н9В	0.9700	C28—H28A	0.9800
C10—C11	1.516 (6)	С29—Н29А	0.9800
C10—H10A	0.9800	С30—Н30А	0.9700
C11—H11A	0.9800	С30—Н30В	0.9700
C12—C13	1.488 (7)	C31—C32	1.461 (6)
C13—C14	1.381 (7)	C32—C37	1.359 (6)
C13—C18	1.390 (6)	C32—C33	1.401 (6)
C14—C15	1.372 (8)	C33—C34	1.355 (8)
C14—H14	0.9300	С33—Н33	0.9300
C15—C16	1.373 (9)	C34—C35	1.466 (5)
C15—H15	0.9300	C34—H34	0.9300
C16—C17	1.407 (8)	C35—C36	1.321 (9)
C16—H16	0.9300	С35—Н35	0.9300
C17—C18	1.334 (7)	C36—C37	1.392 (7)
С17—Н17	0.9300	С36—Н36	0.9300
C18—C19	1.497 (7)	C37—C38	1.463 (7)
C2—C1—H1A	109.5	C21—O12—C27	119.7 (4)
C2—C1—H1B	109.5	C23—O14—C28	119.4 (4)
H1A—C1—H1B	109.5	C25—O16—C26	116.9 (4)
C2—C1—H1C	109.5	C29—O17—C30	111.9 (3)
H1A—C1—H1C	109.5	N2-018-C29	111.7 (3)
H1B—C1—H1C	109.5	O18—N2—C38	124.3 (4)
C2—O2—C10	118.0 (5)	O18—N2—C31	121.3 (4)

C4—O4—C11	119.5 (4)	C38—N2—C31	113.5 (4)
C6—O6—C7	117.1 (4)	C21—C20—H20A	109.5
C8—O7—C9	110.9 (3)	C21—C20—H20B	109.5
N1—O8—C8	112.1 (3)	H20A-C20-H20B	109.5
C19—N1—O8	121.5 (4)	C21—C20—H20C	109.5
C19—N1—C12	114.3 (4)	H20A—C20—H20C	109.5
O8—N1—C12	122.0 (4)	H20B—C20—H20C	109.5
O1—C2—O2	119.3 (6)	O11—C21—O12	122.9 (6)
O1—C2—C1	130.3 (6)	O11—C21—C20	123.5 (6)
O2—C2—C1	110.3 (7)	O12—C21—C20	113.2 (6)
С4—С3—НЗА	109.5	C23—C22—H22A	109.5
С4—С3—Н3В	109.5	С23—С22—Н22В	109.5
НЗА—СЗ—НЗВ	109.5	H22A—C22—H22B	109.5
C4—C3—H3C	109.5	C23—C22—H22C	109.5
НЗА—СЗ—НЗС	109.5	H22A—C22—H22C	109.5
НЗВ—СЗ—НЗС	109.5	H22B—C22—H22C	109.5
O3—C4—O4	122.0 (5)	O13—C23—O14	123.5 (5)
O3—C4—C3	124.3 (5)	O13—C23—C22	126.3 (5)
O4—C4—C3	113.6 (5)	O14—C23—C22	110.1 (5)
С6—С5—Н5А	109.5	C25—C24—H24A	109.5
С6—С5—Н5В	109.5	C25—C24—H24B	109.5
H5A—C5—H5B	109.5	H24A—C24—H24B	109.5
C6—C5—H5C	109.5	C25—C24—H24C	109.5
H5A—C5—H5C	109.5	H_{24A} $-C_{24}$ $-H_{24C}$	109.5
H5B-C5-H5C	109.5	H24B— $C24$ — $H24C$	109.5
05-C6-06	123.3 (4)	015-025-016	124.1 (4)
05-C6-C5	125.2 (5)	015 - C25 - C24	126.8 (5)
06-C6-C5	1114(5)	016-C25-C24	1091(4)
06—C7—C11	1099(3)	016-C26-C30	1104(4)
06	107.2(3)	016-C26-C27	106.2(3)
$C_{11} - C_{7} - C_{8}$	111 6 (4)	C_{30} C_{26} C_{27}	1101(4)
06—C7—H7A	109.4	016-C26-H26A	110.1 (4)
C11 - C7 - H7A	109.1	C_{30} C_{26} H_{26A}	110.1
$C8-C7-H7\Delta$	109.4	C_{27} C_{26} H_{26A}	110.1
C_{0}	109.4	012 027 027 028	106.0(3)
07 - C8 - C7	100.2(3) 1121(3)	012 - 027 - 028	100.9(3)
$0^{\circ} - c^{\circ} - c^{\circ}$	112.1(3) 106.7(3)	$C_{12}^{$	109.5(4)
03 - 03 - 07	100.7 (3)	$C_{20} = C_{27} = C_{20}$	100.6
$O^{\circ} = C^{\circ} = H^{\circ} A$	109.9	$C_2^{0} = C_2^{0} = H_2^{0} A$	109.0
$C_{2} C_{2} C_{2$	109.9	$C_{26} = C_{27} = H_{27A}$	109.0
$C/-C\delta$	109.9	$C_{20} = C_{2} = H_{2} = H_{2}$	109.0
07 - 09 - 010	110.2 (4)	014 - 028 - 027	103.0(3)
0/-0	109.0	014 - 028 - 027	107.0(3)
C10 - C9 - H9A	109.0	$C_{29} = C_{20} = C_{27}$	112.1 (4)
$C_1 = C_2 $	109.0	C_{14} C_{20} C_{28} U_{28}	110.7
	109.0	C_{29} C_{20} H_{20} H_{20}	110.7
HYA - UY - HYB	108.1	$U_2/-U_2\delta$ -H2 δ A	110.7
02 - 010 - 011	108.2 (4)	017 - 029 - 018	110.9 (3)
02 - 010 - 09	109.4 (4)	017 - 0.29 - 0.28	115.8 (4)
UII	108.7 (4)	018-029-028	104.3 (4)

O2—C10—H10A	110.2	O17—C29—H29A	109.2
C11—C10—H10A	110.2	O18—C29—H29A	109.2
C9—C10—H10A	110.2	С28—С29—Н29А	109.2
O4—C11—C7	105.4 (4)	O17—C30—C26	111.0 (3)
O4—C11—C10	109.3 (3)	O17—C30—H30A	109.4
C7-C11-C10	112.2 (4)	C26—C30—H30A	109.4
04—C11—H11A	109.9	017 - C30 - H30B	109.4
C7-C11-H11A	109.9	C26—C30—H30B	109.4
C10—C11—H11A	109.9	H_{30A} $-C_{30}$ H_{30B}	108.0
010-012-N1	125 2 (4)	019-031-N2	123.8 (5)
010-012-013	130.9(4)	019 - C31 - C32	122.8(5)
N1-C12-C13	103.9(4)	N_{2} C_{31} C_{32}	102.0(3) 103.4(4)
C_{14} C_{13} C_{18}	109.9(4) 119.7(5)	C_{37} C_{32} C_{33}	103.4(4)
C14 - C13 - C13	117.7(5) 131.3(5)	$C_{37} - C_{32} - C_{31}$	121.0(4) 109.6(4)
$C_{14} = C_{13} = C_{12}$	101.5(5) 1080(4)	$C_{33}^{33} = C_{32}^{32} = C_{31}^{31}$	109.0(4) 128.9(4)
$C_{10} = C_{13} = C_{12}$	100.9(4)	$C_{33} = C_{32} = C_{31}$	120.9(4)
$C_{15} = C_{14} = C_{15}$	110.1 (5)	$C_{34} = C_{33} = C_{32}$	117.0(3)
$C_{13} = C_{14} = H_{14}$	120.9	$C_{34} = C_{33} = H_{33}$	121.2
C13 - C14 - H14	120.9	С32—С33—П35	121.2
C14 - C15 - C16	121.4 (5)	$C_{33} = C_{34} = C_{35}$	119.6 (5)
C14—C15—H15	119.3	C35—C34—H34	120.2
C16—C15—H15	119.3	C35—C34—H34	120.2
	120.2 (5)	$C_{36} = C_{35} = C_{34}$	121.3 (6)
CI5—CI6—HI6	119.9	C36—C35—H35	119.4
C17—C16—H16	119.9	C34—C35—H35	119.4
	117.7 (6)	$C_{35} = C_{36} = C_{37}$	118.1 (6)
С18—С17—Н17	121.2	С35—С36—Н36	120.9
С16—С17—Н17	121.2	С37—С36—Н36	120.9
C17—C18—C13	122.7 (5)	C32—C37—C36	121.7 (5)
C17—C18—C19	129.9 (5)	C32—C37—C38	109.7 (4)
C13—C18—C19	107.4 (4)	C36—C37—C38	128.5 (5)
O9—C19—N1	126.2 (4)	O20—C38—N2	123.3 (5)
O9—C19—C18	129.0 (4)	O20—C38—C37	133.3 (4)
N1	104.8 (4)	N2—C38—C37	103.4 (4)
C8—O8—N1—C19	-104.9 (4)	C29—O18—N2—C38	-102.4 (5)
C8—O8—N1—C12	93.0 (4)	C29—O18—N2—C31	89.3 (5)
C10—O2—C2—O1	-0.8 (9)	C27—O12—C21—O11	7.8 (9)
C10—O2—C2—C1	179.9 (5)	C27—O12—C21—C20	-179.1 (5)
C11—O4—C4—O3	-1.9 (7)	C28—O14—C23—O13	-6.3 (7)
C11—O4—C4—C3	-178.0 (4)	C28—O14—C23—C22	177.7 (4)
C7—O6—C6—O5	-6.3 (7)	C26—O16—C25—O15	-2.8 (7)
C7—O6—C6—C5	173.9 (4)	C26—O16—C25—C24	177.5 (4)
C6—O6—C7—C11	123.6 (4)	C25—O16—C26—C30	78.9 (5)
C6—O6—C7—C8	-114.9 (4)	C25—O16—C26—C27	-161.8 (4)
C9—O7—C8—O8	178.3 (4)	C21—O12—C27—C28	135.9 (5)
C9—O7—C8—C7	60.9 (5)	C21—O12—C27—C26	-103.2 (5)
N1	73.0 (4)	O16—C26—C27—O12	95.9 (4)
N1	-166.2 (3)	C30—C26—C27—O12	-144.7 (4)
O6—C7—C8—O7	-171.4 (3)	O16—C26—C27—C28	-146.0 (4)
			· · ·

$C_{11} - C_{7} - C_{8} - O_{7}$	-510(5)	C_{30} C_{26} C_{27} C_{28}	-26.6(5)
06-07-08-08	70.3(4)	$C_{20} = C_{20} = C_{20} = C_{20}$	-125.7(4)
$C_{11} - C_{7} - C_{8} - O_{8}$	-1693(3)	$C_{23} = 014 = C_{28} = C_{27}$	125.7(4) 114 7 (4)
C_{8} C_{7} C_{9} C_{10}	-65.7(5)	012 017 028 014	-70.1(4)
$C_{2} = 0^{2} = C_{10} = C_{10}$	-1201(5)	$C_{26} C_{27} C_{28} O_{14}$	70.1(4)
$C_2 = O_2 = C_{10} = C_{11}$	-129.1(3)	$C_{20} = C_{27} = C_{28} = C_{20}$	170.2(4)
$C_2 = C_2 = C_1 = C_2$	112.0(0)	012 - 027 - 028 - 029	1/4.0(5)
07 - 09 - 010 - 02	1//.4 (4)	$C_{20} = C_{27} = C_{28} = C_{29}$	54.9 (5) 76.0 (4)
	59.4 (6)	$C_{30} = 017 = C_{29} = 018$	/6.9 (4)
C4—O4—C11—C7	129.4 (4)	$C_{30} = 017 = C_{29} = C_{28}$	-40.3 (5)
C4—O4—C11—C10	-109.8 (5)	N2-018-C29-017	65.0 (4)
O6—C7—C11—O4	-75.7 (4)	N2-018-C29-C28	-172.1 (3)
C8—C7—C11—O4	165.5 (3)	O14—C28—C29—O17	-137.4 (4)
O6—C7—C11—C10	165.4 (4)	C27—C28—C29—O17	-21.3 (5)
C8—C7—C11—C10	46.6 (5)	O14—C28—C29—O18	101.6 (4)
O2—C10—C11—O4	74.4 (5)	C27—C28—C29—O18	-142.3 (3)
C9—C10—C11—O4	-166.9 (4)	C29—O17—C30—C26	70.2 (5)
O2-C10-C11-C7	-169.0 (4)	O16—C26—C30—O17	84.7 (4)
C9—C10—C11—C7	-50.3 (5)	C27—C26—C30—O17	-32.2 (5)
C19—N1—C12—O10	-172.2 (5)	O18—N2—C31—O19	-6.6 (7)
O8-N1-C12-O10	-8.9 (7)	C38—N2—C31—O19	-176.1 (5)
C19—N1—C12—C13	8.5 (5)	O18—N2—C31—C32	174.0 (4)
O8—N1—C12—C13	171.7 (4)	C38—N2—C31—C32	4.4 (5)
O10-C12-C13-C14	-6.9 (9)	O19—C31—C32—C37	179.7 (5)
N1-C12-C13-C14	172.3 (5)	N2-C31-C32-C37	-0.9 (5)
O10-C12-C13-C18	175.5 (5)	O19—C31—C32—C33	-0.3 (9)
N1-C12-C13-C18	-5.2 (5)	N2-C31-C32-C33	179.0 (5)
C18—C13—C14—C15	-2.7 (7)	C37—C32—C33—C34	0.6 (7)
C12—C13—C14—C15	179.9 (5)	C31—C32—C33—C34	-179.4 (5)
C13—C14—C15—C16	0.6 (9)	C32—C33—C34—C35	-2.2 (9)
C14—C15—C16—C17	1.9 (10)	C33—C34—C35—C36	4.2 (12)
C15—C16—C17—C18	-2.1(9)	C34—C35—C36—C37	-4.2 (12)
C16—C17—C18—C13	-0.1 (8)	C33—C32—C37—C36	-0.6 (8)
C16—C17—C18—C19	179.6 (5)	C31—C32—C37—C36	179.3 (5)
C14—C13—C18—C17	2.5 (8)	C33—C32—C37—C38	177.4 (4)
C12—C13—C18—C17	-179.6 (5)	C31—C32—C37—C38	-2.7 (6)
C14—C13—C18—C19	-177.2 (4)	C35—C36—C37—C32	2.5 (10)
C12—C13—C18—C19	0.6 (5)	C35—C36—C37—C38	-175.1 (6)
O8—N1—C19—O9	8.5 (7)	O18—N2—C38—O20	4.7 (8)
C12—N1—C19—O9	171.9 (5)	C31—N2—C38—O20	173.9 (5)
O8—N1—C19—C18	-171.5 (4)	O18—N2—C38—C37	-175.1 (4)
C12—N1—C19—C18	-8.2 (5)	C31—N2—C38—C37	-5.9 (5)
C17—C18—C19—O9	4.5 (9)	C32—C37—C38—O20	-174.7 (6)
C13—C18—C19—O9	-175.8 (5)	C36—C37—C38—O20	3.1 (10)
C17—C18—C19—N1	-175.5 (5)	C32—C37—C38—N2	5.1 (5)
C13—C18—C19—N1	4.2 (5)	C36—C37—C38—N2	-177.1 (6)
			···- (~)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
С7—Н7А…О5	0.98	2.22	2.676 (6)	107
C10—H10A…O1	0.98	2.14	2.609 (7)	107
С11—Н11А…ОЗ	0.98	2.29	2.702 (6)	104
C11—H11 <i>A</i> ···O15 ⁱ	0.98	2.42	3.339 (6)	157
C22—H22A····O1 ⁱⁱ	0.96	2.39	3.329 (7)	165
C26—H26A····O3 ⁱⁱⁱ	0.98	2.54	3.385 (6)	144
C27—H27A…O11	0.98	2.29	2.656 (6)	101
C28—H28A····O13	0.98	2.32	2.718 (6)	103
C30—H30 <i>B</i> ···O5	0.97	2.56	3.429 (6)	149
C35—H35…O5 ^{iv}	0.93	2.54	3.294 (8)	138

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y+1/2, -z+1; (iii) x, y+1, z; (iv) -x+1, y-1/2, -z.